The Use of CERES/ERBE data at NCEP/CPC

- * Evaluating MRF using CERES
- * Arctic Oscillation and OLR

Shi-Keng Yang A. Jim Miller Shuntai Zhou

25th CERES Science Team Meeting Brussels, Belgium 01/21~23/02

On 18 May 2001 changes to the following areas in the MRF analysis/forecast system were implemented:

Physics

- . Inclusion of cloud condensate as a history variable
- . Use of the cloud condensate in the calculation of radiative transfer
- . Inclusion of cumulus momentum mixing

Analysis

- . Stronger quality control for AMSU radiance
- . Refinement of hurricane relocation algorithm

This package of changes has produced improvement in circulation patterns in both the extra-tropics and the tropics, and a significant reduction of the false alarm rate for tropical storms. It has also changed significantly the model's temperature bias.

AVHRR VS CERES JJA 01

AVHRR vs NEW Model JJA 01

Old Model JJA 00 vs CERES JJA 00

NEW Model JJA 01 vs CERES JJA 01

GDAS - CERES JJA '01

GDAS - AVHRR JJA '01

Summary:

- CERES provides valuable information for adjusting new cloud/radiation algorithms.
- AVHRR OLR poses significant bias ~ -10 W/M^2.
- New prognostic cloud algorithm eliminated erroneous stratification in the midhigh latitudes from the old diagnostic scheme, and reduces biases.
- Will continue to use CERES cloud products for further evaluation. LW RRTM of AER is on the parallel runs.

From L & H (2001), SAM wind (contours) and mean meridional circulation (vectors). High-Low composite. Left: GFDL; Right NCAR/NCEP

From L & H (2001), NAM wind (contours) and mean meridional circulation (vectors). High-Low composite. Left: GFDL; Right NCAR/NCEP

Summary:

- ERBE WFOV OLR provides an independent test of analysis/model-derived AO relationship.
- Monthly AO index and OLR composite correlated well in the latitudes with strong vertical motions.
- Weaker lead-lag correlation with OLR on monthly basis
- Need to study shorter temporal scales (using CERES daily -> weekly data) AO and Net Radiation for lead-lag relationships.